Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Proteins ; 91(5): 694-704, 2023 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2268280

RESUMO

Understanding how protein-protein binding affinity is determined from molecular interactions at the interface is essential in developing protein therapeutics such as antibodies, but this has not yet been fully achieved. Among the major difficulties are the facts that it is generally difficult to decompose thermodynamic quantities into contributions from individual molecular interactions and that the solvent effect-dehydration penalty-must also be taken into consideration for every contact formation at the binding interface. Here, we present an atomic-level thermodynamics analysis that overcomes these difficulties and illustrate its utility through application to SARS-CoV-2 neutralizing antibodies. Our analysis is based on the direct interaction energy computed from simulated antibody-protein complex structures and on the decomposition of solvation free energy change upon complex formation. We find that the formation of a single contact such as a hydrogen bond at the interface barely contributes to binding free energy due to the dehydration penalty. On the other hand, the simultaneous formation of multiple contacts between two interface residues favorably contributes to binding affinity. This is because the dehydration penalty is significantly alleviated: the total penalty for multiple contacts is smaller than a sum of what would be expected for individual dehydrations of those contacts. Our results thus provide a new perspective for designing protein therapeutics of improved binding affinity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Desidratação , Termodinâmica , Anticorpos Antivirais/metabolismo , Ligação Proteica , Anticorpos Neutralizantes/química
2.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: covidwho-2246813

RESUMO

The worldwide spread of COVID-19 continues to impact our lives and has led to unprecedented damage to global health and the economy. This highlights the need for an efficient approach to rapidly develop therapeutics and prophylactics against SARS-CoV-2. We modified a single-domain antibody, SARS-CoV-2 VHH, to the surface of the liposomes. These immunoliposomes demonstrated a good neutralizing ability, but could also carry therapeutic compounds. Furthermore, we used the 2019-nCoV RBD-SD1 protein as an antigen with Lip/cGAMP as the adjuvant to immunize mice. Lip/cGAMP enhanced the immunity well. It was demonstrated that the combination of RBD-SD1 and Lip/cGAMP was an effective preventive vaccine. This work presented potent therapeutic anti-SARS-CoV-2 drugs and an effective vaccine to prevent the spread of COVID-19.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Anticorpos de Domínio Único , Animais , Camundongos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , Lipossomos/imunologia , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/uso terapêutico
3.
PLoS Pathog ; 18(11): e1010951, 2022 11.
Artigo em Inglês | MEDLINE | ID: covidwho-2140720

RESUMO

SARS-CoV-2 continues to acquire mutations in the spike receptor-binding domain (RBD) that impact ACE2 receptor binding, folding stability, and antibody recognition. Deep mutational scanning prospectively characterizes the impacts of mutations on these biochemical properties, enabling rapid assessment of new mutations seen during viral surveillance. However, the effects of mutations can change as the virus evolves, requiring updated deep mutational scans. We determined the impacts of all single amino acid mutations in the Omicron BA.1 and BA.2 RBDs on ACE2-binding affinity, RBD folding, and escape from binding by the LY-CoV1404 (bebtelovimab) monoclonal antibody. The effects of some mutations in Omicron RBDs differ from those measured in the ancestral Wuhan-Hu-1 background. These epistatic shifts largely resemble those previously seen in the Alpha variant due to the convergent epistatically modifying N501Y substitution. However, Omicron variants show additional lineage-specific shifts, including examples of the epistatic phenomenon of entrenchment that causes the Q498R and N501Y substitutions present in Omicron to be more favorable in that background than in earlier viral strains. In contrast, the Omicron substitution Q493R exhibits no sign of entrenchment, with the derived state, R493, being as unfavorable for ACE2 binding in Omicron RBDs as in Wuhan-Hu-1. Likely for this reason, the R493Q reversion has occurred in Omicron sub-variants including BA.4/BA.5 and BA.2.75, where the affinity buffer from R493Q reversion may potentiate concurrent antigenic change. Consistent with prior studies, we find that Omicron RBDs have reduced expression, and identify candidate stabilizing mutations that ameliorate this deficit. Last, our maps highlight a broadening of the sites of escape from LY-CoV1404 antibody binding in BA.1 and BA.2 compared to the ancestral Wuhan-Hu-1 background. These BA.1 and BA.2 deep mutational scanning datasets identify shifts in the RBD mutational landscape and inform ongoing efforts in viral surveillance.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/genética , COVID-19/genética , Anticorpos Neutralizantes/química , Mutação
4.
Nat Commun ; 13(1): 6309, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: covidwho-2087203

RESUMO

Coronavirus vaccines that are highly effective against current and anticipated SARS-CoV-2 variants are needed to control COVID-19. We previously reported a receptor-binding domain (RBD)-sortase A-conjugated ferritin nanoparticle (scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected non-human primates (NHPs) from SARS-CoV-2 WA-1 infection. Here, we find the RBD-scNP induced neutralizing antibodies in NHPs against pseudoviruses of SARS-CoV and SARS-CoV-2 variants including 614G, Beta, Delta, Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5, and a designed variant with escape mutations, PMS20. Adjuvant studies demonstrate variant neutralization titers are highest with 3M-052-aqueous formulation (AF). Immunization twice with RBD-scNPs protect NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protect mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect animals from multiple different SARS-related viruses. Such a vaccine could provide broad immunity to SARS-CoV-2 variants.


Assuntos
COVID-19 , Nanopartículas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas Virais , Camundongos , Animais , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , COVID-19/prevenção & controle , Anticorpos Neutralizantes/química , Ferritinas
5.
Cell Rep ; 41(3): 111512, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: covidwho-2060516

RESUMO

The SARS-CoV-2 Omicron variant evades most neutralizing vaccine-induced antibodies and is associated with lower antibody titers upon breakthrough infections than previous variants. However, the mechanism remains unclear. Here, we find using a geometric deep-learning model that Omicron's extensively mutated receptor binding site (RBS) features reduced antigenicity compared with previous variants. Mice immunization experiments with different recombinant receptor binding domain (RBD) variants confirm that the serological response to Omicron is drastically attenuated and less potent. Analyses of serum cross-reactivity and competitive ELISA reveal a reduction in antibody response across both variable and conserved RBD epitopes. Computational modeling confirms that the RBS has a potential for further antigenicity reduction while retaining efficient receptor binding. Finally, we find a similar trend of antigenicity reduction over decades for hCoV229E, a common cold coronavirus. Thus, our study explains the reduced antibody titers associated with Omicron infection and reveals a possible trajectory of future viral evolution.


Assuntos
COVID-19 , Vacinas Virais , Camundongos , Animais , Glicoproteína da Espícula de Coronavírus , Testes de Neutralização , Anticorpos Antivirais/química , SARS-CoV-2 , Anticorpos Neutralizantes/química , Epitopos/química
6.
Int J Pharm ; 627: 122256, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2049315

RESUMO

Throughout the COVID-19 pandemic, many prophylactic and therapeutic drugs have been evaluated and introduced. Among these treatments, monoclonal antibodies (mAbs) that bind to and neutralize SARS-CoV-2 virus have been applied as complementary and alternative treatments to vaccines. Although different methodologies have been utilized to produce mAbs, traditional hybridoma fusion technology is still commonly used for this purpose due to its unmatched performance record. In this study, we coupled the hybridoma fusion strategy with mRNA-lipid nanoparticle (LNP) immunization. This time-saving approach can circumvent biological and technical hurdles, such as difficult-to-express membrane proteins, antigen instability, and the lack of posttranslational modifications on recombinant antigens. We used mRNA-LNP immunization and hybridoma fusion technology to generate mAbs against the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein. Compared with traditional protein-based immunization approaches, inoculation of mice with RBD mRNA-LNP induced higher titers of serum antibodies and markedly increased serum neutralizing activity. The mAbs we obtained can bind to SARS-CoV-2 RBDs from several variants. Notably, RBD-mAb-3 displayed particularly high binding affinities and neutralizing potencies against both Alpha and Delta variants. In addition to introducing specific mAbs against SARS-CoV-2, our data generally demonstrate that mRNA-LNP immunization may be useful to quickly generate highly functional mAbs against emerging infectious diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Pandemias , Formação de Anticorpos , RNA Mensageiro , COVID-19/prevenção & controle , Anticorpos Antivirais , Anticorpos Monoclonais/química , Imunização
7.
Viruses ; 14(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: covidwho-2033142

RESUMO

In the context of the COVID-19 pandemic, conducting antibody testing and vaccination is critical. In particular, the continued evolution of SARS-CoV-2 raises concerns about the effectiveness of vaccines currently in use and the activity of neutralizing antibodies. Here, we used the Escherichia coli expression system to obtain nine different SARS-CoV-2 RBD protein variants, including six single-point mutants, one double-point mutant, and two three-point mutants. Western blotting results show that nine mutants of the RBD protein had strong antigenic activity in vitro. The immunogenicity of all RBD proteins was detected in mice to screen for protein mutants with high immunogenicity. The results show that the mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y, especially the former two, had better immunogenicity than the wild type. This suggests that site E484 has a significant impact on the function of the RBD protein. Our results demonstrate that recombinant RBD protein expressed in E. coli can be an effective tool for the development of antibody detection methods and vaccines.


Assuntos
COVID-19 , Vacinas Virais , Aminoácidos/genética , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais , COVID-19/prevenção & controle , Escherichia coli/genética , Humanos , Camundongos , Proteínas Mutantes/genética , Mutação , Testes de Neutralização , Pandemias , Proteínas Recombinantes , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
8.
Proc Natl Acad Sci U S A ; 119(31): e2205412119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1947766

RESUMO

Camelid single-domain antibodies, also known as nanobodies, can be readily isolated from naïve libraries for specific targets but often bind too weakly to their targets to be immediately useful. Laboratory-based genetic engineering methods to enhance their affinity, termed maturation, can deliver useful reagents for different areas of biology and potentially medicine. Using the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and a naïve library, we generated closely related nanobodies with micromolar to nanomolar binding affinities. By analyzing the structure-activity relationship using X-ray crystallography, cryoelectron microscopy, and biophysical methods, we observed that higher conformational entropy losses in the formation of the spike protein-nanobody complex are associated with tighter binding. To investigate this, we generated structural ensembles of the different complexes from electron microscopy maps and correlated the conformational fluctuations with binding affinity. This insight guided the engineering of a nanobody with improved affinity for the spike protein.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Afinidade de Anticorpos , SARS-CoV-2 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Afinidade de Anticorpos/genética , Microscopia Crioeletrônica , Entropia , Engenharia Genética , Humanos , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Structure ; 30(9): 1233-1244.e7, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1937225

RESUMO

Immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike elicits diverse antibodies, but it is unclear if any of the antibodies can neutralize broadly against other beta-coronaviruses. Here, we report antibody WS6 from a mouse immunized with mRNA encoding the SARS-CoV-2 spike. WS6 bound diverse beta-coronavirus spikes and neutralized SARS-CoV-2 variants, SARS-CoV, and related sarbecoviruses. Epitope mapping revealed WS6 to target a region in the S2 subunit, which was conserved among SARS-CoV-2, Middle East respiratory syndrome (MERS)-CoV, and hCoV-OC43. The crystal structure at 2 Å resolution of WS6 revealed recognition to center on a conserved S2 helix, which was occluded in both pre- and post-fusion spike conformations. Structural and neutralization analyses indicated WS6 to neutralize by inhibiting fusion and post-viral attachment. Comparison of WS6 with other recently identified antibodies that broadly neutralize beta-coronaviruses indicated a stem-helical supersite-centered on hydrophobic residues Phe1148, Leu1152, Tyr1155, and Phe1156-to be a promising target for vaccine design.


Assuntos
COVID-19 , Vacinas , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
10.
Bioinformatics ; 38(16): 4051-4052, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1908750

RESUMO

SUMMARY: We have developed a database, Ab-CoV, which contains manually curated experimental interaction profiles of 1780 coronavirus-related neutralizing antibodies. It contains more than 3200 datapoints on half maximal inhibitory concentration (IC50), half maximal effective concentration (EC50) and binding affinity (KD). Each data with experimentally known three-dimensional structures are complemented with predicted change in stability and affinity of all possible point mutations of interface residues. Ab-CoV also includes information on epitopes and paratopes, structural features of viral proteins, sequentially similar therapeutic antibodies and Collier de Perles plots. It has the feasibility for structure visualization and options to search, display and download the data. AVAILABILITY AND IMPLEMENTATION: Ab-CoV database is freely available at https://web.iitm.ac.in/bioinfo2/ab-cov/home. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Anticorpos Antivirais , Coronavirus , Anticorpos Antivirais/química , Anticorpos Neutralizantes/química , Glicoproteína da Espícula de Coronavírus/química , Bases de Dados Factuais
11.
Sci Immunol ; 7(74): eabo3425, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1832328

RESUMO

Neutralizing antibodies that recognize the SARS-CoV-2 spike glycoprotein are the principal host defense against viral invasion. Variants of SARS-CoV-2 bear mutations that allow escape from neutralization by many human antibodies, especially those in widely distributed ("public") classes. Identifying antibodies that neutralize these variants of concern and determining their prevalence are important goals for understanding immune protection. To determine the Delta and Omicron BA.1 variant specificity of B cell repertoires established by an initial Wuhan strain infection, we measured neutralization potencies of 73 antibodies from an unbiased survey of the early memory B cell response. Antibodies recognizing each of three previously defined epitopic regions on the spike receptor binding domain (RBD) varied in neutralization potency and variant-escape resistance. The ACE2 binding surface ("RBD-2") harbored the binding sites of neutralizing antibodies with the highest potency but with the greatest sensitivity to viral escape; two other epitopic regions on the RBD ("RBD-1" and "RBD-3") bound antibodies of more modest potency but greater breadth. The structures of several Fab:spike complexes that neutralized all five variants of concern tested, including one Fab each from the RBD-1, -2, and -3 clusters, illustrated the determinants of broad neutralization and showed that B cell repertoires can have specificities that avoid immune escape driven by public antibodies. The structure of the RBD-2 binding, broad neutralizer shows why it retains neutralizing activity for Omicron BA.1, unlike most others in the same public class. Our results correlate with real-world data on vaccine efficacy, which indicate mitigation of disease caused by Omicron BA.1.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes/química , Anticorpos Antivirais , Humanos , Testes de Neutralização , SARS-CoV-2/genética
12.
Nat Biotechnol ; 40(9): 1336-1340, 2022 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1815566

RESUMO

We designed a protein biosensor that uses thermodynamic coupling for sensitive and rapid detection of neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in serum. The biosensor is a switchable, caged luciferase-receptor-binding domain (RBD) construct that detects serum-antibody interference with the binding of virus RBD to angiotensin-converting enzyme 2 (ACE-2) as a proxy for neutralization. Our coupling approach does not require target modification and can better distinguish sample-to-sample differences in analyte binding affinity and abundance than traditional competition-based assays.


Assuntos
Técnicas Biossensoriais , COVID-19 , Anticorpos Neutralizantes/química , Anticorpos Antivirais/genética , COVID-19/diagnóstico , Humanos , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
13.
mBio ; 13(3): e0358021, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: covidwho-1807332

RESUMO

Structural characterization of infection- and vaccination-elicited antibodies in complex with antigen provides insight into the evolutionary arms race between the host and the pathogen and informs rational vaccine immunogen design. We isolated a germ line-encoded monoclonal antibody (mAb) from plasmablasts activated upon mRNA vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and determined its structure in complex with the spike glycoprotein by electron cryomicroscopy (cryo-EM). We show that the mAb engages a previously uncharacterized neutralizing epitope on the spike N-terminal domain (NTD). The high-resolution structure reveals details of the intermolecular interactions and shows that the mAb inserts its heavy complementarity-determining region 3 (HCDR3) loop into a hydrophobic NTD cavity previously shown to bind a heme metabolite, biliverdin. We demonstrate direct competition with biliverdin and that, because of the conserved nature of the epitope, the mAb maintains binding to viral variants B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta), and B.1.1.529 (omicron). Our study describes a novel conserved epitope on the NTD that is readily targeted by vaccine-induced antibody responses. IMPORTANCE We report the first structure of a vaccine-induced antibody to SARS-CoV-2 spike isolated from plasmablasts 7 days after vaccination. The genetic sequence of the antibody PVI.V6-14 suggests that it is completely unmutated, meaning that this type of B cell did not undergo somatic hypermutation or affinity maturation; this cell was likely already present in the donor and was activated by the vaccine. This is, to our knowledge, also the first structure of an unmutated antibody in complex with its cognate antigen. PVI.V6-14 binds a novel, conserved epitope on the N-terminal domain (NTD) and neutralizes the original viral strain. PVI.V6-14 also binds the newly emerged variants B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta), and B.1.1.529 (omicron). Given that this antibody was likely already present in the donor prior to vaccination, we believe that this antibody class could potentially "keep up" with the new variants, should they continue to emerge, by undergoing somatic hypermutation and affinity maturation.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Epitopos , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Biliverdina , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Células Germinativas/metabolismo , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
14.
Cell Rep ; 39(7): 110812, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1803708

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , Epitopos , Humanos
15.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: covidwho-1774343

RESUMO

Coronavirus disease 2019 pandemic continues globally with a growing number of infections, but there are currently no effective antibody drugs against the virus. In addition, 90% amino acid sequence identity between the S2 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV S proteins attracts us to examine S2-targeted cross-neutralizing antibodies that are not yet well defined. We therefore immunized RenMab mice with the full-length S protein and constructed a high-throughput antibody discovery method based on single-cell sequencing technology to isolate SARS-CoV-2 S-targeted neutralizing antibodies and cross-neutralizing antibodies against the S2 region of SARS-CoV-2/SARS-CoV S. Diversity of antibody sequences in RenMab mice and consistency in B-cell immune responses between RenMab mice and humans enabled screening of fully human virus-neutralizing antibodies. From all the frequency >1 paired clonotypes obtained from single-cell V(D)J sequencing, 215 antibodies with binding affinities were identified and primarily bound S2. However, only two receptor-binding domain-targeted clonotypes had neutralizing activity against SARS-CoV-2. Moreover, 5' single-cell RNA sequencing indicated that these sorted splenic B cells are mainly plasmablasts, germinal center (GC)-dependent memory B-cells and GC B-cells. Among them, plasmablasts and GC-dependent memory B-cells were considered the most significant possibility of producing virus-specific antibodies. Altogether, using a high-throughput single cell-based antibody discovery approach, our study highlighted the challenges of developing S2-binding neutralizing antibodies against SARS-CoV-2 and provided a novel direction for the enrichment of antigen-specific B-cells.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Anticorpos Amplamente Neutralizantes , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
16.
Science ; 375(6584): 1048-1053, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1673339

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has become the dominant infective strain. We report the structures of the Omicron spike trimer on its own and in complex with angiotensin-converting enzyme 2 (ACE2) or an anti-Omicron antibody. Most Omicron mutations are located on the surface of the spike protein and change binding epitopes to many current antibodies. In the ACE2-binding site, compensating mutations strengthen receptor binding domain (RBD) binding to ACE2. Both the RBD and the apo form of the Omicron spike trimer are thermodynamically unstable. An unusual RBD-RBD interaction in the ACE2-spike complex supports the open conformation and further reinforces ACE2 binding to the spike trimer. A broad-spectrum therapeutic antibody, JMB2002, which has completed a phase 1 clinical trial, maintains neutralizing activity against Omicron. JMB2002 binds to RBD differently from other characterized antibodies and inhibits ACE2 binding.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , SARS-CoV-2/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Epitopos , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Termodinâmica
17.
Colloids Surf B Biointerfaces ; 213: 112400, 2022 May.
Artigo em Inglês | MEDLINE | ID: covidwho-1670367

RESUMO

The influence of the properties of different solid substrates on the tethering of two antibodies, IgG1-CR3022 and IgG1-S309, which were specifically engineered for the detection of SARS-CoV-2, has been examined at the molecular level using conventional and accelerated Molecular Dynamics (cMD and aMD, respectively). Two surfaces with very different properties and widely used in immunosensors for diagnosis, amorphous silica and the most stable facet of the face-centered cubic gold structure, have been considered. The effects of such surfaces on the structure and orientation of the immobilized antibodies have been determined by quantifying the tilt and hinge angles that describe the orientation and shape of the antibody, respectively, and the dihedrals that measure the relative position of the antibody arms with respect to the surface. Results show that the interactions with amorphous silica, which are mainly electrostatic due to the charged nature of the surface, help to preserve the orientation and structure of the antibodies, especially of the IgG1-CR3022, indicating that the primary sequence of those antibodies also plays some role. Instead, short-range van der Waals interactions with the inert gold surface cause a higher degree tilting and fraying of the antibodies with respect to amorphous silica. The interactions between the antibodies and the surface also affect the correlation among the different angles and dihedrals, which increases with their strength. Overall, results explain why amorphous silica substrates are frequently used to immobilize antibodies in immunosensors.


Assuntos
Técnicas Biossensoriais , COVID-19 , Anticorpos Monoclonais , Anticorpos Neutralizantes/química , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Ouro/química , Humanos , Imunoensaio/métodos , Imunoglobulina G , SARS-CoV-2 , Dióxido de Silício
18.
Cell Rep ; 38(9): 110428, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1670282

RESUMO

The recently reported B.1.1.529 Omicron variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) includes 34 mutations in the spike protein relative to the Wuhan strain, including 15 mutations in the receptor-binding domain (RBD). Functional studies have shown Omicron to substantially escape the activity of many SARS-CoV-2-neutralizing antibodies. Here, we report a 3.1 Å-resolution cryoelectron microscopy (cryo-EM) structure of the Omicron spike protein ectodomain. The structure depicts a spike that is exclusively in the 1-RBD-up conformation with high mobility of RBD. Many mutations cause steric clashes and/or altered interactions at antibody-binding surfaces, whereas others mediate changes of the spike structure in local regions to interfere with antibody recognition. Overall, the structure of the Omicron spike reveals how mutations alter its conformation and explains its extraordinary ability to evade neutralizing antibodies.


Assuntos
Microscopia Crioeletrônica , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Humanos , Evasão da Resposta Imune/genética , Modelos Moleculares , Mutação , Testes de Neutralização , Ligação Proteica , Estrutura Quaternária de Proteína , SARS-CoV-2/genética , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/genética
19.
Science ; 375(6582): 782-787, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1650668

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant of concern (VOC) resists neutralization by major classes of antibodies from COVID-19 patients and vaccinated individuals. In this study, serum of Beta-infected patients revealed reduced cross-neutralization of wild-type virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of VOC-specific clonotypes and accommodation of mutations present in Beta and Omicron into a major antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with wild type-elicited antibodies, including a public VH1-58 clonotype that targets the RBD ridge. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift, with implications for design of next-generation vaccines and therapeutics.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Reações Cruzadas , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Anticorpos Antivirais/metabolismo , Deriva e Deslocamento Antigênicos , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
20.
Phys Chem Chem Phys ; 24(5): 3410-3419, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1650366

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among all the potential targets studied for developing drugs and antibodies, the spike (S) protein is the most striking one, which is on the surface of the virus. In contrast with the intensively investigated immunodominant receptor-binding domain (RBD) of the protein, little is known about the neutralizing antibody binding mechanisms of the N-terminal domain (NTD), let alone the effects of NTD mutations on antibody binding and thereby the risk of immune evasion. Based on 400 ns molecular dynamics simulation for 11 NTD-antibody complexes together with other computational approaches in this study, we investigated critical residues for NTD-antibody binding and their detailed mechanisms. The results show that 36 residues on the NTD including R246, Y144, K147, Y248, L249 and P251 are critically involved in the direct interaction of the NTD with many monoclonal antibodies (mAbs), indicating that the viruses harboring these residue mutations may have a high risk of immune evasion. Binding free energy calculations and an interaction mechanism study reveal that R246I, which is present in the Beta (B.1.351/501Y.V2) variant, may have various impacts on current NTD antibodies through abolishing the hydrogen bonds and electrostatic interaction with the antibodies or affecting other interface residues. Therefore, special attention should be paid to the mutations of these key residues in future antibody and vaccine design and development.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Evasão da Resposta Imune/genética , Mutação , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA